National Collaborating Centre for Environmental Health

Centre de collaboration nationale en santé environnementale

www.ncceh.ca

COVID-19 Risks and Precautions for Choirs

NCCEH Evidence scan

Juliette O'Keeffe MSc, PhD

Environment Health and Knowledge Translation Scientist National Collaborating Centre for Environmental Health

Choral Canada August 19, 2020

Outline

1. About NCCEH

- 2. Notable COVID-19 outbreaks related to choirs
- 3. Understanding transmission risks
- 4. Precautionary measures
- 5. Emerging research
- 6. Q&A

Outdoor Air

-

Water

National Collaborating Centre for Environmental Health

Centre de collaboration nationale en santé environnementale

Contaminants and hazards

Climate 444

Food

Emerging Public Health Issues

<u>×</u>

e.g. COVID-19

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

444

 \circ

COVID-19 resources for EH

Full report available at <u>NCCEH.CA</u> ...and many other COVID-19 resources

Outline

1. About NCCEH

2. Notable COVID-19 outbreaks related to choirs

3. Understanding transmission risks

4. Precautionary measures

5. Emerging research

6. Q&A

Notable outbreaks

Skagit Valley Washington,

- 53 cases of 61 person choir, three hospitalizations, 2 deaths
- Low community spread, avoided physical contact, used hand sanitizer
- Long duration, minimal spacing (15-25 cm), limited ventilation

Berlin Cathedral Choir, Germany

- 60 cases of 80 persons who attended a March 9 practice
- One member reported a positive COVID-19 test March 14
- Within two weeks, 30 positive and 30 additional symptomatic

Amsterdam Mixed Choir, Netherlands

- 102 cases of 130 person choir, four deaths (1 member, 3 associated persons)
- Multiple rehearsals Feb 25-Mar 7
- Symptomatic persons reported on Mar 3, 7 rehearsals and March 8 performance

French choirs

- Feb 28 Whir au Val (Haut-Rhin) 20 choristers and 69 secondary cases; 9 deaths
- Mar 12 Men's choir practice, 19 cases of 27 participants, 7 hospitalizations, no deaths;
- Connected to another choir where several members reported symptoms

But outbreaks have occurred in other group settings where there was no singing – why are choirs special?

Settings of published outbreaks to Apr 2020

Outline

1. About NCCEH

2. Notable COVID-19 outbreaks related to choirs

3. Understanding transmission risks

4. Precautionary measures

5. Emerging research

6. Q&A

Common factors in many outbreaks

- Indoors
- Crowded spaces
- Close contacts
- Lots of interaction (greeting, talking, laughing, cheering, shouting, singing, sharing of food/objects)
- Long duration of interaction
- Poor ventilation
- Prevalence of community spread of the virus (symptomatic and asymptomatic)

Large respiratory droplets – direct exposure when in close contact with an infected person who is sneezing, coughing (droplets > $5 \mu m$)

Smaller respiratory droplets/aerosols – direct exposure from close contact or indirect exposure from accumulated aerosols (droplets of < 5 µm)

Contact with contaminated surfaces/fomites followed by contact with nose, mouth, or eyes

Particle size

• Large droplets (\geq 5~10 µm)

- More likely to fall to the ground at short distance
- Intense but less frequently release in coughs/sneezes
- More likely expelled by symptomatic persons

• Upper airway

• Smaller droplets/aerosols (< 5 μm)

- Less likely to fall to ground at short distance
- May persist in the air for longer/accumulate
- Less intense release but could be generated continuously
- Generated by symptomatic <u>AND</u> asymptomatic/presymptomatic persons
- Potential to reach lower respiratory tract

10 µm

) 1 µm

0.1 µm SARS-CoV-2 Singing in groups: Risks associated with **large** gatherings

- Close contact while greeting, talking, laughing, sharing of sheet music, stands, microphones
 - Increases risk of exposure to respiratory droplets and short-range aerosols
- Gathering in large numbers for prolonged
 duration indoors
 - Increases risk of exposure to accumulated aerosols
 - Limited ventilation reduces the dilution and dispersion of aerosols
- Sharing of surfaces or objects such as musical stands, chairs, books, microphones, instruments, food, dishes, drink dispensers
 - Increased risk of exposure via fomites

Singing in groups: Risks associated with increased emission of droplets

- A combination of processes can affect **Quantity** and the **Size** of particles released during vocalization
- Main mechanisms for production of droplets during vocalization are fluid-film burst in the bronchioles
- Droplets release may also originate in the larynx and oral cavity

Singing in groups: Risks associated with increased emission of droplets

Quantity

- Vocalization of any type releases a higher concentration of particles than breathing
- Singing releases more particles than speaking
- Particle release is affected by:
 - Volume (Louder = more aerosols)
 - Vocalization style/enunciation
 - Deep exhalation and rapid inhalation
 - Super-emitters

Particle size

Singing in groups: Risks associated with increased emission of droplets

- Studies have found that vocalization can produce a range of particle sizes
 - Smaller droplets dominate (\leq 5-10 µm)
 - Up to 80% are \leq 1 μ m
 - Smaller droplets can remain suspended and travel further than large droplets
 - Smaller droplets are much more likely to penetrate the lower respiratory tract

Outline

1. About NCCEH

2. Notable COVID-19 outbreaks related to choirs

3. Understanding transmission risks

4. Precautionary measures

5. Emerging research

6. Q&A

Minimizing the Risks: Distancing

- Maintaining 2 m between participants helps reduce spread due to LARGE respiratory droplets
- Distancing can also help to reduce some of the short-range transmission of smaller droplets
- Maintaining distance is easier in larger venues/rooms
- Ensure distancing is maintained for <u>ALL</u> activities, not just while singing (e.g. entry/exit, warm up spaces, bathrooms)
- Additional barriers or partitions could be considered where practical to do so and distancing is difficult to maintain

Minimizing the Risks: Reduce density and duration

- Larger spaces with fewer faces
 - Reduced loading of infectious particles; increased dilution and dispersion of accumulated aerosols
- Shorter duration (e.g. 30 minutes) and breaks between rehearsal or performance
 - Reduces accumulation of potentially infectious particles
 - Breaks should be in a different location, and not compromise distancing principles

Minimizing the Risks: Ventilation

Outdoors and uncrowded

Large indoor space with mechanical/natural ventilation (high ACH)

> Smaller indoor space with mechanical or natural ventilation (high ACH)

> > Avoid confined indoor space & no ventilation

Minimizing the Risks: Personal measures

- Symptomatic or potentially exposed persons should stay home
- High risk/susceptible persons should stay home
- Face coverings if possible wear at all times, particularly where closer encounters are more likely (More on masks in the Q&A)
- Hand hygiene
- Avoid close contact, handshakes, sharing of objects/equipment

Risk Assessment

- Various approaches (WHO, Spahn and Richter 2020, PHAC, etc.)
- Consider the specific circumstance
 - Risk level of participants
 - Risk level of the venue
 - Risk level of the activity
 - Level of community transmission
- Consider mitigation potential
 - Hierarchy of controls/mitigation measures, local PH advice
- Does mitigation eliminate or reduce risks sufficiently?

nitigation percentage score. By c with the current modifications and	onnecting the two scores, the use Lother planning considerations in	er will be able to identify the over place	rall risk of COVID-19 spread sko	uld the mass gathering occur						
Total Risk Assessme Total Mitigation Sco	D-19 Risk Evaluatio Mitigation Tab (%)	n Tab	2	:	Very low Risk					
Risk Versus Mitigati					Observance of Minimum Distance (radial 2m/61/2 feet, or 1,5m lateral and 2m in front, staggered arrangement)	t,				
		Total Mitigat	ion Score (%)			Closed spaces	Remarkable reduction of Risk			
Total Risk Score	76-100	51-75	26-50	0-25		 Very large ("Cathedral-Situation") 				
0	VERY LOW	VERY LOW	VERY LOW	LOW		 High air exchange rate (HAVAC (6/h)) or sufficient intermittent ventilation (CO₂-traffic light) 				
1	VERY LOW	LOW	LOW	MODERATE		 Wearing surgical masks while singing Specific Measures in Brass-/Wind Instruments 				
2	LOW	LOW	MODERATE	MODERATE		(Shields, condensation water)				
3	MODERATE	MODERATE	HIGH	HIGH						
4	HIGH	HIGH	VERY HIGH	VERY HIGH	:	Abnormalities during entrance screening No observance of distances				
5	VERY HIGH	VERY HIGH	VERY HIGH	VERY HIGH		(radial 2m, or 1,5m lateral and 2m in front),	High Risk			
	-					Too many people in a room	Ŭ			
KEY						Insurficient ventilation				
VERY LOW	Overall risk of transmission and further spread of COVID-19 is considered VERY LOW									
LOW	Overall risk of transmission and further spread of COVID-19 is considered					Absence of Risk awareness Absence of Risk reducing measures	Ultra-High risk			
MODERATE	Overall risk of transmission and further spread of COVID-19 is considered					5				
HIGH	Overall risk of transmission and further spread of COVID-19 is considered				Spahn/Richter 2020: Risiko Management Corona in the field of musi					
VERY HIGH	Overall risk of transmission and further spread of COVID-19 is considered					assessment of the infection fisk depending on the fisk-reducing measures (based on the Nohl 2019)				

Table 3. Matrix for determining overall risk of contributing to COVID-19 community transmission and next steps

		Risk mitigation potential (from Table 2)						
		Stronger	Moderate	Weaker				
Risk level (from Table 1)	High	Moderate risk of contributing to COVID- 19 community transmission. Increase or strengthen mitigation strategies if possible.	Higher risk of contributing to COVID-19 community transmission. Consider delaying reopening. Increase or strengthen mitigation strategies.	Highest risk of contributing to COVID-19 community transmission. Consider delaying reopening. Increase or strengthen mitigation strategies.				
	Medium	Lower risk of contributing to COVID- 19 community transmission. Maintain mitigation strategies.	Moderate risk of contributing to COVID-19 community transmission. Increase or strengthen mitigation strategies if possible.	Higher risk of contributing to COVID-19 community transmission. Consider delaying reopening. Increase or strengthen mitigation strategies.				
	Low	Lowest risk of contributing to COVID- 19 community transmission. Maintain	Lower risk of contributing to COVID-19 community transmission. Maintain mitigation strategies.	Moderate risk of contributing to COVID-19 community transmission. Increase or strengthen				

Outline

1. About NCCEH

- 2. Notable COVID-19 outbreaks related to choirs
- 3. Understanding transmission risks
- 4. Precautionary measures
- 5. Emerging research

Emerging research (USA)

- International Coalition for the Performing Arts – preliminary results
 - Studies indicate that a higher concentration of respiratory particles are released during singing compared to breathing
 - Measurements indicate the effectiveness of masks and screens for reducing release of respiratory particles
 - Models of infection risk indicate risk increases over time; masks reduce risk overall

$Singing\,APS~$ (0.5-20 μm particles)

Indoor Case Study: Mask Impact on Infection Risk

Infection risk r by Wells-Riley equation at the height of mouth opening, with breathing rate of 8 L/min.

International Coalition of Performing Arts. 2020

Emerging research (Germany)

- Mürbe et al. 2020
 - Laser particle counter study, 8 subjects during breathing, speaking and singing.
 - Significantly higher emission rates for singing compared to mouth breathing and speaking; Emissions increased with volume
 - Variation between singers; Higher emission rates for phonation by females vs. males
- Hartmann and Kriegel 2020
 - Relationship between CO₂ and aerosol concentration
- Hartmann et al. 2020
 - Risk assessment of rehearsal rooms for choirs with regard to virus-laden aerosols; Compared rehearsal rooms, concert Halls and office space
- Kriegel and Hartmann 2020
 - Indoor risk assessment of virus laden aerosols..

See Spahn and Richter 2020. Risk Assessment of a Coronavirus Infection in the Field of Music. Fourth update (2020 July 17). https://www.mh-freiburg.de/en/university/covid-19-corona/riskassessment

Figure 2. Boxplots of the particle source strengths (bars represent the median) for different gender, voice classifications and tasks: mouth breathing, speaking and singing (left y-axis). Only particles $\leq 5 \mu m$ were considered. For singing, the maximum sound pressure levels LAF_{MAX} are also shown (full circles, right y-axis).

Mürbe et al. 2020

Emerging research Risk Calculators

- COVID-19 Airborne Transmission Estimator (Jimenez 2020)
- Airborne Infection Risk Calculator (AIRC) (Mikszewski et al. 2020)
- Risk Analysis of the transmission of CARS-CoV-2 by aerosols (in German, Trukenmüller 2020)
- Essential inputs
 - Room dimensions
 - Air exchange
 - Number of persons
 - Duration of exposure

Estimation of COVID-19 aerosol transmission: master spreadsheet, adapt this one to your case

This is a general spreadsheet applicable to any situation, under the assumptions of this model - See notes specific to this case (if applicable) at the v
Important inputs as highlighted in orange - change these for your situation
Other, more specialized inputs are highlighted in yellow - change only for more advanced applications
Calculations are not highlighted - don't change these unless you are sure you know what you are doing
Results are in blue -- these are the numbers of interest for most people

Environmental Parameters

	Value			Value in other u	nits	Source / Comments
Length of room	20	ft		6.1	m	Can enter as ft or as m (once
Width of room	20	ft	=	6.1	m	Can enter as ft or as m (once
	400	sq ft		37	m2	Can overwrite the m2 one. If y
Height	8	ft	=	2.4	m	Can enter as ft or as m (once
Volume				91	m3	Volume, calculated. (Can also
Pressure	0.95	atm				Used only for CO2 calculation
Temperature	20	С				Use web converter if needed
Relative Humidity	50	%				Not yet used, but may eventua
Background CO2 Outdoors	415	ppm				See readme
Duration of event	30	min		0.5	h	Value for your situation of inter
Number of repetitions of event	1	times				For e.g. multiple class meeting
Ventilation w/ outside air	0.7	h-1				Value in h-1: Readme: Same a
Readme FAQs	Master-Choir	Class S	ubway	Super 🤆	÷ : •	

Airborne Infection	n Risk	Calculator	AIRC			1151. Enter value202. Calculated value
1. ROOM DIMENSIONS			5. EXPOSURE SCENARIO	D		6. RESULTS
Room Area	А	200 (m ²)	Infectious Occupant #1			Susceptible Occupant A
Ceiling Height	h	4 (m)	Time of Entry	0	(minutes)	Modeled Exposure Time (minutes) = 60
Room Volume	V	(m^3)	Time of Exit	60	(minutes)	Individual Infection Risk (%) = 1.06%
			ER _q from Selector Tab	170	(quanta/hr)	Exposure Time for 0.1% Risk (minutes) = 5
2. INFECTIOUS VIRAL R	REMOVAI	L RATE			-	Exposure Time for 1% Risk (minutes) = 56
Air Exchange Rate AER 0.5 (hr ⁻¹)		Infectious Occupant #2			Maximum Room Occupancy for $R_0 < 1 = 14$	
Particle Deposition Rate	k	0.24 (hr ⁻¹)	Include in Model?	Yes	-Select	
Viral Inactivation Rate	λ	0.63 (hr ⁻¹)	Time of Entry	60	(minutes)	Continuous Occupancy
Total Viral Removal Rate	IVRR	$1.4 (hr^{-1})$	Time of Exit	120	(minutes)	Modeled Exposure Time (minutes) = 120
			ER _q from Selector Tab	170	(quanta/hr)	Individual Infection Risk (%) = 1.58%
3. INITIAL QUANTA CO			-	Exposure Time for 0.1% Risk (minutes) = 21		
n _0	0.0E+0	(quanta/m³)	Susceptible Occupant A			Exposure Time for 1% Risk (minutes) = 86
			Time of Entry	60	(minutes)	Maximum Room Occupancy for $R_0 < 1 = 9$
4. TOTAL TIME OF OCC	Y	Time of Exit	120	(minutes)		
Time t	120	(minutes)	IR from Selector Tab	0.54	(m^3/hr)	

Emerging research Aerosols transmission

- Further understanding of transmission via aerosols
 - Additional evidence of viral RNA detected in the room air of COVID-19 patients. Improved understanding of how virus moves around the room – particles found deposited on window sills, under the bed (Santarpia et al. 2020);
 - Isolation of culturable virus from air sample of patient rooms > 2 m distance (Lednicky et al. 2020, pre-print)

Viral particles can be dispersed due to ambient air currents

These particles may be infectious

What remains unknown?

Many questions remain...

- Movement and accumulation of aerosols in different indoor environments?
- How long do viral particles remain infectious and what is the infectious dose?
- Transmission by children, severity of disease, longer term effects
- Effectiveness of emerging technologies
 - Disinfection technologies
 - New types of coatings/surfaces
- Results of further outbreak investigations
 - Improve understanding of transmission for different settings, activities, groups etc.
- And more...

Outline

1. About NCCEH

- 2. Notable COVID-19 outbreaks related to choirs
- 3. Understanding transmission risks
- 4. Precautionary measures
- 5. Emerging research
- 6. Q&A

National Collaborating Centre for Environmental Health

Centre de collaboration nationale en santé environnementale

() 💟 🛈 🖸

thank you!

www.ncceh.ca

Juliette.okeeffe@bccdc.ca

Production of this presentation has been made possible through a financial contribution from the Public Health Agency of Canada.

Selected Key References

- Charlotte N. High Rate of SARS-CoV-2 Transmission due to Choir Practice in France at the Beginning of the COVID-19 Pandemic. medRxiv. 2020;2020.07.19.20145326. Available from: https://www.medrxiv.org/content/medrxiv/early/2020/08/05/2020.07.19.20145326.full.pdf.
- European Choral Association. **Covid-19 information for choral organisations, choirs and conductors**. Available from: <u>https://docs.google.com/document/d/1QHhJbirrbPWQ6CFxbj-uy_3QwjNvXIPptchFvVoLIHg/edit#</u>.
- Feng Y, Marchal T, Sperry T, Yi H. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study. J Aerosol Sci. 2020;147:. Available from: <u>https://www.sciencedirect.com/science/article/pii/S0021850220300744?via%3Dihub</u>.
- Fennelly KP. Particle sizes of infectious aerosols: implications for infection control. The Lancet. 2020 July. Available from https://doi.org/10.1016/S2213-2600(20)30323-4 International Coalition of Particle sizes of Infectious aerosols: implications for infection control. The Lancet. 2020 July. Available from https://doi.org/10.1016/S2213-2600(20)30323-4 International Coalition of Particle sizes of Infectious aerosols: implications for infection control. The Lancet. 2020 July. Available from https://doi.org/10.1016/S2213-2600(20)30323-4
- International Coalition of Performing Arts. International Coalition of Performing Arts Aerosol Study Round 2. Indianapolis, IN: National Federation of State High School Associations; 2020 Aug. Available from: https://www.nfhs.org/media/4030003/aerosol-study-prelim-results-round-2-final.pdf.
- Jimenez JL. COVID-19 Airborne Transmission Estimator. 2020. Available from https://tinyurl.com/covid-estimator
- Ledinicky JA et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. medRxiv. 2020:2020.08.03.20167395. Available from: https://doi.org/10.1101/2020.08.03.20167395 Mikszewski A et al. Airborne Infection Risk Calculator (AIRC). 2020. Available from: https://www.unicas.it/media/4952018/AIRC%20Users%20Manual%201.0%20July%202020.pdf
- Mürbe et al. 2020. Aerosol emission is increased in professional singing. Available from: <u>https://depositonce.tu-berlin.de/bitstream/11303/11491/5/muerbe_etal_2020_aerosols-singing.pdf</u> National Collaborating Centre for Methods and Tools. COVID-19 Rapid Evidence Reviews. Available from: <u>https://www.nccmt.ca/knowledge-repositories/covid-19-evidence-reviews</u>
- O'Keeffe, J. COVID-19 Risks and Precautions for Choirs. Vancouver, BC: National Collaborating Centre for Environmental Health. 2020 July. Available from: <u>https://ncceh.ca/documents/evidence-review/covid-19-risks-and-precautions-choirs</u>.
- Public Health Agency of Canada. Community-based measures to mitigate the spread of coronavirus disease (COVID-19) in Canada. 2020. Available from https://www.canada.ca/en/public-health-measures-mitigate-covid-19.html#_Community_gathering_spaces
- Public Health Ontario. What We Know So Far About... Coronavirus Disease 2019 (COVID-19). 2020. Available from: https://www.publichealthontario.ca/en/diseases-and-conditions/infectious-diseases/novel-coronavirus/what-we-know
- Santarpia JL, Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Scientific Reports. 2020;10(1):12732. Available from: https://doi.org/10.1038/s41598-020-69286-3. Spahn C, Richter B. Risk Assessment of a Coronavirus Infection in the Field of Music. Fourth update. 2020 July 17. Available from https://www.mh-freiburg.de/en/university/covid-19-corona/risk-assessment assessment
- Tang, Y. Mao, R.M. Jones, Q. Tan, J.S. Ji, N. Li, J. Shen, Y. Lv, L. Pan, P. Ding, X.Wang, Y. Wang, C. Raina MacIntyre, X. Shi, Aerosol Transmission of SARS-CoV-2? Evidence, Prevention and Control, Environment International (2020), doi: https://doi.org/10.1016/j.envint.2020.106039.
- Trukenmüller A. Risikoanalyse der Übertragung von SARS-CoV-2 durch Aerosole. (Risk Analysis of the transmission of CARS-CoV-2 by aerosols in German). 2020. Available from: https://www.magentacloud.de/share/e7esxr9ywc

VirMus.nl. Literature. Available from: <u>https://www.virmus.nl/literature/</u>

World Health Organization. WHO mass gathering COVID-19 risk assessment tool – Generic events. 2020 Jul. Available from: <u>https://www.who.int/publications/i/item/10665-333185</u>